

Table of Contents

			Page
Ordering	& Warranty Information		2
About the	е Сотрапу		3
Capabiliti	ies & Certifications		8
Filter Spe	ecification Guide		9
Discre	te Element Filters		14
Series	<u>Description</u>	<u>Frequency</u>	Page
ML	Lowpass Filters, Miniature	0.2 MHz — 1000 MHz	15
MT	Lowpass Filters, Micro-Miniature	500 MHz — 6000 MHz	18
MH	Highpass Filters, Miniature	0.2 MHz — 1000 MHz	21
MD	Highpass Filters, Micro-Miniature	500 MHz — 6000 MHz	24
MB	Bandpass Filters, Miniature	0.5 MHz — 250 MHz	27
MP	Bandpass Filters, Micro-Miniature	100 MHz – 6 GHz	30
MF	Band Reject Filters, Miniature	10 MHz — 100 MHz	33
Cavity	Filters		35
<u>Series</u>	<u>Description</u>	<u>Frequency</u>	Page
MN	Iris Coupled Bandpass Filters	300 MHz – 26.5 GHz	36
MC	Combline Bandpass Filters	300 MHz — 26.5 GHz	39
MM	Interdigital Bandpass Filters	300 MHz – 26.5 GHz	42
Waveg	juide Products		45
<u>Series</u>	<u>Description</u>		Page
WMN	Iris Coupled Bandpass Filters (Narrow Bandwid	th)	46
WMM	Post-Iris Coupled Bandpass Filters (Medium Ba	ndwidth)	47
WMW	Septum Coupled Bandpass Filters (Wide Bandw	idth)	48
WCA	Waveguide-to-Coax Adaptors		49
WRJA	Rotatable Joint Adaptor		51
Waveguid	de Assemblies		52
Wirele	ess and Miscellaneous Products		53
<u>Series</u>	<u>Description</u>		Page
CWC	Combiners		54
CWD	Duplexers		55
CWP	Bandpass Filters		56
CWS	Notch Filters		57
TL	Tubular Lowpass Filters		58
Hi-Q	Cavity Bandpass and Notch Filters		60
19141	Lowpass RF Filters		61
Helical Re	esonators Stripline Microstrip		62
VSWR to	Return Loss Chart		63

Ordering & Warranty

Information

Ordering and Warranty Information

Orders may be placed through our local sales Representative or directly with the factory. Final determination of price, delivery, terms and acceptance of orders may be made only by the staff at Microwave Filter Company, Inc. in East Syracuse, New York.

Ordering Address:

Microwave Filter Company, Inc.

6743 Kinne Street

East Syracuse, New York USA 13057

Ordering: 888-206-6610

Main Telephone: 315-438-4700 or 800-448-1666

Fax: 315-463-1467

E-mail: mfcsales@microwavefilter.com Web site: www.microwavefilter.com

Cage code: 27834

Quotations and Prices:

Prices are F.O.B. shipping point and will be invoiced at current prices in effect on date of purchase. Quotations are for immediate acceptance only. Prices are subject to change without notice. All clerical errors made by Microwave Filter Company, Inc. are subject to correction at its sole discretion.

Payment/Credit Terms:

Terms are Net 30 days to customers who have an established open account. If an open account has not been established, we will ship C.O.D. for certified check. We will also accept Visa, American Express and MasterCard.

Shipping/Freight Claims:

Shipments are made F.O.B. shipping point. All charges related to the shipment are the responsibility of the customer. If the customer does not specify method of shipment, the Company reserves the right to select the carrier of choice. The shipment must be inspected upon receipt. If damaged, it is the responsibility of the customer to file a claim with the carrier.

Sales Tax:

When applicable, sales tax will appear as a separate line item on Microwave Filter Company, Inc. invoices unless a copy of your sales tax exemption certificate has been previously submitted.

Warranty:

Products returned to Microwave Filter Company, Inc. within one year of the date of purchase for original defects will be replaced or repaired free of charge or refunded, at our option, if we confirm the defects. Otherwise, we will notify you of the repair charges before we do any work. This is the full extend of our warranty. Microwave Filter Company, Inc. does not accept responsibility for consequential or collateral damages.

E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057

About Microwave Filter Company

Microwave Filter Company, Inc. (MFC) has been a leader in the design, development and manufacture of high quality filter products since 1967. MFC offers products covering the frequency range from 5 Hz to 50 GHz for customers around the world. Designs include waveguide, stripline/microstrip, lumped element and cavity/ coaxial topologies. Filter types and accessories include bandpass, bandstop, combiners, couplers, diplexers, highpass, lowpass and adaptors.

All MFC filters are produced within our facility by a staff that is "Committed to Excellence". In fact, MFC has received awards for its outstanding performance in providing excellent customer service, quality product and fast turn-around for large OEM programs.

The Company has been the recipient of the Defense Supply Center Columbus Supplier Excellence Silver Awards. Award winners have met the stringent quality and delivery requirements established by the Defense Logistics Agency.

MFC is an ISO 9001:2008 Registered Company.

The products described in this catalog are just a sampling of the designs that have been developed for our customers over the years. Since there are thousands of designs in our archives, it would be impossible to present them all in this format. We invite you to call on our experienced applications' engineers to design the filter to meet your specifications.

Facilities

The company occupies a modern 40,000 square foot facility located in the heart of Central New York (East Syracuse). The facility is equipped with an impressive complement of analytical and design software, test instrumentation, prototype and manufacturing equipment to create passive filters, components and sub systems in the frequency range from 5 Hz to 50 GHz. This manufacturing facility includes a state-of-the-art CAD-CAM system, a test department with automated network analyzers to 50 GHz, a high capacity conveyorized soldering oven, fully compliant finishing operation and a TQM/ISO9000 based quality assurance program to insure the intrinsic quality of the products produced.

Manufacturing

stations.

A network based CAD-CAM system allows the transfer of data and programs to the CNC turning and milling centers for fabrication of machined parts. Prototype PC boards are similarly produced by computer controlled PC board mills. A Grieve high capacity conveyorized soldering oven is used for production of large quantity assemblies while smaller production quantities are assembled at hand soldering or brazing

At MFC we strive for continuous improvement through the application of "lean manufacturing principles". In addition, MFC utilizes cellular manufacturing with visual management controls and ISO 9000-based quality systems from engineering design to manufacturing to ensure the intrinsic quality of the products produced and rapid response to customers' needs.

Mazak CNC Milling Center

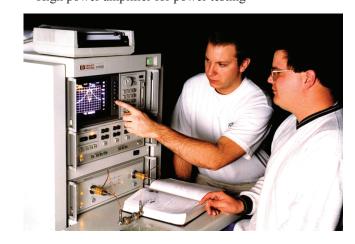
Mazak CNC Lathe for Production Prototyping

Workcell for implementation of Lean Manufacturing

A production associate assembles a 2 GHz filter for a leading test equipment manufacturer.

Finite element analysis software allows the modeling of complex waveguide structures.

Production associates assemble 2 GHz filters for a leading test equipment manufacturer.


Engineering/Test

Efficient simulation, design and analysis software enhanced by proprietary MFC developed software, allow rapid and accurate filter development at reasonable cost. Automated network analyzers provide rigorous product testing and performance data storage on a serial number basis.

High power amplifier for power testing

E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057

Measurement readings at the environmental chamber.

Mechanical specifications are closely inspected with an optical comparator.

Quality

ISO-9001 contract and design review procedures coupled with a QA department that is compliant with MIL-I-45208 inspection systems and MIL-STD-45622 calibration system standards assures process and product integrity. A certified staff soldering instructor regularly trains associates to MIL-STD-2000A (now superceded by J-STD-001). There is 100 percent in-process inspection conducted for electrical and physical tolerances, workmanship and specification compliance.

Other Testing Facilities

Other in-house testing facilities include three environmental chambers capable of testing products for temperatures of -70 to 200 degrees Celsius and humidity up to 100 percent. Several high power amplifiers are available for power tests up to 2500 watts at 220 MHz and 100 watts at 1,000 MHz. An automated in-house anechoic chamber provides antenna pattern measurement capability in the 2 to 8 GHz frequency range. Facilities are also available for salt spray, sand and dust, shock and vibration, RFI leakage and altitude testing.

C-Band Earth Station for filter testing

Quality Service Awards

The Microwave Filter Product Line

Microwave Filter Company designs and manufactures a complete line of high quality filters for a wide variety of applications for customers around the world. Markets and customers served include communications, broadcast and CATV, military/aerospace, university and government research labs, as well as C-band and Ku-band satellite systems. From ultra miniature LC filters or small Ka-band waveguide filters to large UHF diplexers, MFC can provide cost effective designs in a variety of configurations.

Partial List of MFC Customers

- Agilent Technologies
- Alvarion
- Andrew Corporation
- BAE Systems
- Boeing
- General Dynamics
- Harris Corporation
- Hewlett Packard

- ITT Aerospace
- Lockheed Martin
- Microwave Data Systems
- Motorola
- Northrop Grumman
- Raytheon Systems Company
- Rockwell Collins, Inc.
- U. S. Government

Capabilities & Certifications

QUALITY

- In process inspection for electrical performance, physical tolerances, workmanship and specification compliance
- ISO9001:2008 for contract and design review procedures
- MIL-STD certifications and compliance using in-house (or MIL certified outsource) capability

Leak Humidity

Standard	Topic	Conditions
MIL-I-45208	Inspection systems	
MIL-STD-45622	Calibration system standards	
MIL-STD-2000A (now	Soldering	
superceded by J-STD-001)		
MIL-STD-202F	Environmental	
(and MIL-STD 810)	Operating Temperature	-55° to +85°C
	Storage Temperature	-55° to +125°C
(and MIL-STD 810)	Thermal Shock	Method 107
(and MIL-STD 810)	Altitude	Method 105C
(and MIL-STD 810)	Mechanical Shock	Method 213B
	Connector Strength	Method 211A
(and MIL-STD 810)	Random Vibrations	Method 214
	High Frequency Vibrations	Method 204D
(and MIL-STD-810)	Salt Spray and Fog	Method 101D
	Solvent Resistance	Method 215J
	Solder Heat	Method 210D
	Solderability	Method 208H

• In house equipment includes:

Temperature - Several microprocessor controlled environmental chambers.

Vibration - Shake tables with accelerometers calibrated for G-forces; adjustable for any plane

Altitude - Vacuum vessel/pump with manometer calibrated in inches Hg for barometric pressure;

Method 112E

Method 106F

equated to altitude in thousands of feet.

Power - Up to 2500 watts

E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057

FILTER SPECIFICATION GUIDE

In general the parameters describing the transition from "stopband to passband" (and "passband to stopband") of a filter are most significant to the filter and system designer. Thus, it is necessary to define the terminology used to specify filter performance, particularly in the transition area.

TERMINOLOGY:

Attenuation:

Loss of signal strength by transmission through a filter. Refers specifically to signal power amplitude loss. Measured in decibels (dB).

Bandwidth:

The width of the passband of a bandpass filter. Expressed as the frequency difference between lower and upper relative 3 dB attenuation points.

Bandwidth Ratio (Shape Factor):

For bandpass filters the bandwidth ratio or shape factor is the ratio of the attenuation bandwidth to the 3 dB passband bandwidth for a given stopband attenuation. Similarly the shape factor for a band reject filter is the 3 dB bandwidth divided by the attenuation bandwidth. In a like manner the shape factor for a low pass filter is the ratio of the attenuation frequency to the 3 dB cut off frequency while it is the reciprocal ratio for the high pass configuration.

Bessel Function:

A mathematical transfer function used to optimally yield constant time delay in a filter without consideration of amplitude response for a given number of sections, N. This function is similar to a Gaussian function.

Center Frequency (F_a):

The center frequency is defined as the arithmetic or geometric mean between the upper and lower 3 dB frequencies. F_c may not necessarily be the peak transmission point of the band pass filter.

$$F_{c} Arithmetic mean = \frac{F_{-3dB}(high) + F_{3dB}(low)}{2}$$

$$F_{c} Geometric mean = \sqrt{F_{-3dB}(high) \times F_{-3dB}(low)}$$

Chebychev Function:

A mathematical transfer function that produces a curve with predetermined ripples (usually specified in dB) in the passband and yields the sharpest possible monotonic attenuation slope beyond the cutoff for a given number of filter sections, N. This produces a "squarer" amplitude response than a Butterworth transfer function but with less desirable phase and time delay characteristics. There is a family of Chebyshev transfer functions (0.1 dB ripple, 0.5 dB ripple, etc).

Cut-off Frequency (Fco):

The upper passband edge in lowpass filters or the lower passband edge in highpass filters closest to the stop band. MFC normally uses the point at which the VSWR equals or exceeds 1.5/1.

Decibel (dB):

A unit used to express the power ratio between two signals, P1 and P2 existing at two ports. By definition:

$$dB = 10 LOG_{10} \frac{P1}{P2}$$

It can be used to express voltage and current ratios when the voltage or current is measured at ports having identical impedance.

Dissipation Loss:

Dissipation loss is caused by the I²R loss in the conductors and components of a device. In general, this loss is inversely proportional to the Q of the component(s) and the structure.

Elliptic Function:

A mathematical transfer function used to yield the sharpest possible amplitude response for a given number of circuit elements. The elliptic transfer function has a Chebyshev response in both the passband and the stopband but a poorer phase response and transient response than any of the other classical transfer functions. Also known as a Cauer transfer function.

Group Delay:

Group Delay is the time delay within the passband of a filter and is the derivative of the phase response with respect to frequency, in radians. Typically the group delay deviation is specified as a peak to peak maximum allowable in the passband. It is of interest since it can limit the minimum symbol width of a digital signal for a given BER (Bit Error Rate). Figure 6 indicates a typical family of curves for group delay as a function of N (number of filter sections) normalized to the 3 dB bandwidth.

Insertion Loss:

The insertion loss of a filter is the additional loss between the source and the load caused by the insertion of the filter compared to its absence. Insertion loss is equal to the sum of the dissipation loss and the reflection (return) loss.

Linear Phase Filter:

Since phase is the time integral of frequency, a filter with a linear phase as a function of passband frequency will exhibit a constant time delay in its passband (see Group Delay).

Passband Ripple:

In a band pass filter this refers to the wave-like variation in attenuation in the passband of the filter due to load mismatch (VSWR). Classic transfer functions such as Butterworth (Max Flat), Gaussian and Bessel have no ripple while Chebychev and Elliptic transfer functions are characterized by equal ripple in the passband.

Phase Shift:

The changing of the phase of a signal as it passes through a filters. A delay in time of the signal is referred to as phase lag. In normal networks, phase lag increases with frequency, producing a positive envelope delay.

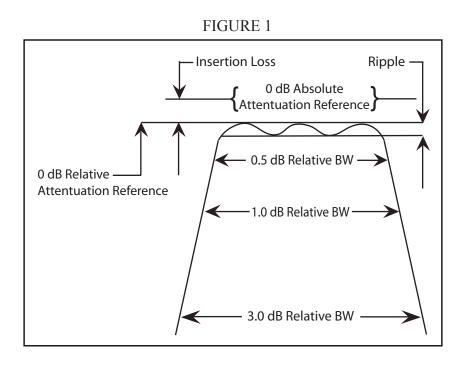
Q or **Q**uality Factor:

A figure of merit of a capacitor or inductor. The ratio of its reactance (imaginary impedance) to its equivalent series resistance (real impedance). In bandpass filters, "loaded Q" is a term used to define the ratio of the center frequency, Fc to the 3 dB bandwidth. It's reciprocal (in percent) is the percent bandwidth of the filter.

LOADED Q =
$$\underline{\text{Center Frequency (Fc)}}$$

3 dB Bandwidth

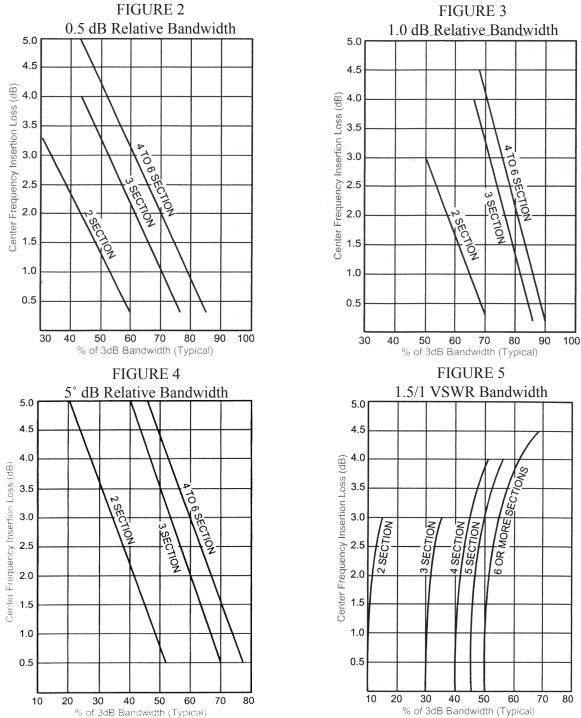
Relative Attenuation:


Attenuation measured with the point of minimum attenuation in the filter as the zero dB reference point. See Figure 1.

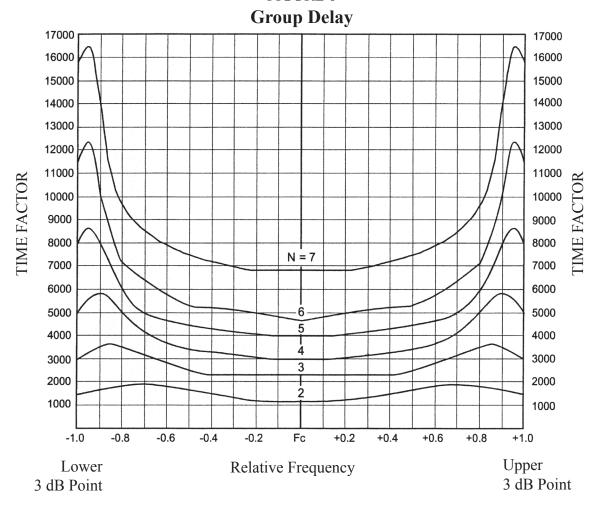
Return Loss (VSWR):

VSWR is the maximum to minimum value of the standing wave ratio in a circuit due to the mismatch of the source and load. Ideally, conjugate match will produce VSWR of 1. Return loss is related to VSWR as follows

$$RL = -20 \text{ Log} \left[\frac{VSWR + 1}{VSWR - 1} \right]$$


Thus, a 14 dB return loss corresponds to a VSWR of about 1.5:1.

BANDPASS FILTER CURVES


The following curves provide approximate relationships between center frequency insertion loss and 3 dB bandwidth and number of section as independent variables.

While these well-known approximation curves apply to all standard bandpass filters, it is advisable that specific requirements be discussed with an MFC applications engineer.

E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057

FIGURE 6

The approximate group (time) delay of an MFC Chebyshev bandpass filter can be calculated using the following equation: TF

 $\frac{\text{TF}}{\text{BW}_{-3 \text{ dB}} \times \pi} = \text{Nanoseconds}$

Where BW _{3 dB} is the filter relative bandwidth in MHz and TF is the time factor taken from the graph.

Example

A 5 section filter, with 3 dB bandwidth equal to 400 MHz would have a group delay at Fc of approximately:

$$\frac{4000}{400 \times 3.14} = \frac{10}{3.14} = 3.18 \text{ Nanoseconds}$$

The group delay at Fc plus or minus 140 MHz is:

$$\frac{5000}{400 \times 3.14} = \frac{5000}{1256} = 3.98 \text{ Nanoseconds}$$

Discrete Element Filters

A variety of filter requirements can be satisfied by using a Microwave Filter Company discrete element (LC) filter. These versatile units cover the broad frequency range of 200 KHz to 6 GHz, and are available in a variety of packages. All standard bandpass LC filters utilize a low ripple Chebyshev design which offers the best compromise of low loss, low VSWR, and high selectivity. Each filter situation is unique, and the data provided on the following pages offers only a small sample of our capabilities. Should a different design become necessary to meet your requirements, MFC can provide units with Bessel, Butterworth, Elliptic, Gaussian, or Linear Phase responses.

Miniature and Micro-miniature LC Filters:

Miniature and Micro-miniature filters are perfect for applications where size is at a premium. The lowpass and highpass versions cover the frequency range from 0.2 MHz to 6 GHz, while the bandpass filters will cover from 0.5 MHz to 6 GHz. These units are usually designed to a 0.1 dB Chebyshev response using 3 to 9 sections, although other responses and number of sections are available to meet specific requirements. A variety of connector options are also available including surface mount. These units provide similar performance to the larger LC filters with the same frequency, bandwidth, and attenuation requirements.

Design Curves

The normalized bandwidth attenuation curves included here-in are representative only and are not meant to be definitive with regard to the filter parameters. Many other variables allow the designer to tailor the transfer function to meet the custom needs of a requirement.

ML Series Discrete Element, Miniature Lowpass Filters

Microwave Filter Company's ML series of Lowpass filters offer superior performance in a small package for a wide range of applications.

FEATURES:

- Available frequency range: 0.2 MHz to 1000 MHz
- Miniature package
- 3-10 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Frequency (MHz)	VSWR typical	Average Power (Watts, nominal)	Impedance (ohms)	No. of Sections
ML10	0.2-10	1.5:1	15	50 *	3-9
ML20	10-200	1.5:1	15	50 *	3-9
ML30	150-1000	1.5:1	10	50 *	3-9

*75 Ω is available

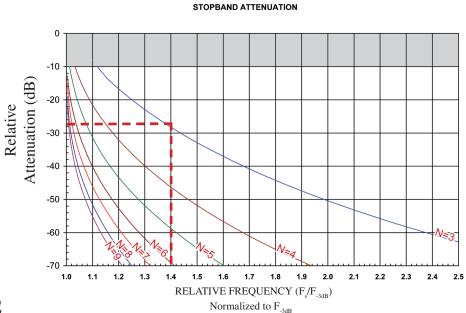
MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Model Number
3	Start of Stopband Frequency (MHz)
4	3dB Cut -off Frequency (MHz)
5	Connector Code (Input/Output)
6	Mechanical Outline (Style)

SAMPLE

8	ML20-	70/	50-	PN/PN-	1
1	2	3	4	5	6

CONNECTOR CODE CHART					
Connector Style	Connector Code	Style			
"N" Female	NF	1			
"N" Male	NM	1			
BNC Female	BF	1			
BNC Male	BM	1			
TNC Female	TF	1			
TNC Male	TM	1			
SMA Female	SF	1,2			
SMA Male	SM	1,2			
PC Pins	PN	1,2			
Special	XX	1,2			


*Note: For illustration purposes only. Consult factory for specific information.

ML Series Discrete Element, Miniature Lowpass Filters

Selectivity- The stopband performance of a filter determines the number of sections required. Use the following graph.

The graph provides the lowpass filter stopband attenuation as a function of the number of filter sections and the stopband frequency F_s normalized to the 3dB cutoff frequency $F_{-3 \text{ dB}}$

EXAMPLE

Determine the number of sections required to achieve an attenuation of 30 dB at 140 MHz (F_s) with a 3 dB cutoff frequency (F_{-3dB}) of 100 MHz

- 3dB Cutoff Frequency, $F_{-3dB} = 100 \text{ MHz}$
- Stopband rejection frequency $F_s = 140 \text{ MHz}$
- Attenuation value of stopband= 30dB

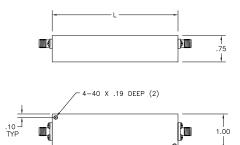
 $\underline{Step~1.}~$ Normalize stopband frequency $(F_{_s})$ to the -3 dB cutoff frequency $F_{_{\text{-3dB}}}$

$$\frac{F_s}{F_{3dR}} = \frac{140MHz}{100MHz} = 1.4$$

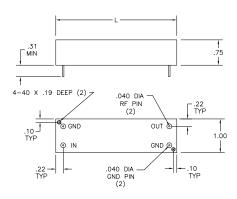
<u>Step 2.</u> Determine the minimum number of sections required to provide a stopband attenuation equal to or greater than 30dB.

Note from the intersection of 1.4 on the X- axis and curve N=4 the attenuation (Y-axis) is -46 dB and N=3 is approx -28dB. Therefore the minimum number of sections required is N=4

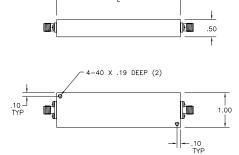
*Note: For illustration purposes only. Consult factory for specific information.


E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057

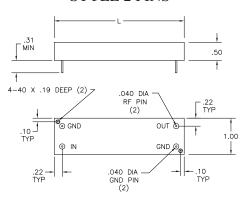
ML Series


Discrete Element, Miniature Lowpass Filters

STYLE 1 CONNECTORS



.10 TYP


STYLE 1 PINS

STYLE 2 CONNECTORS

STYLE 2 PINS

Model	Number of Sections	Style	Width (IN.)	Height (IN.)	Length (IN.)
ML Series	3-6	1	1.00	0.75	2.38
ML Series	7-9	1	1.00	0.75	3.58
ML Series	3-6	2	1.00	0.50	2.38
ML Series	7-9	2	1.00	0.50	3.58

MT Series

Discrete Element, Micro-Miniature Lowpass Filters

Microwave Filter Company's MT series of Lowpass filters offer superior performance in a small package for a wide range of applications.

FEATURES:

- Available frequency range: 500 MHz to 6000 MHz
- Micro-Miniature package
- 3-10 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Frequency (MHz)	VSWR typical	Average Power (Watts, nominal)	Impedance (ohms)	No. of Sections
MT10	500-6000	1.5:1	1	50	3-9

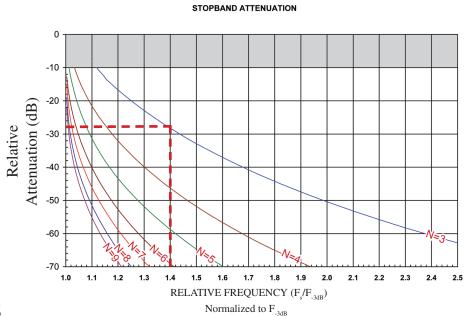
MODEL DESIGNATION

1110	DEE DEDIGNATION
Code	Description
1	Number of Sections
2	Model Number
3	Start of Stopband Frequency (MHz)
4	3dB Cut -off Frequency (MHz)
5	Connector Code (Input/Output)
6	Mechanical Outline (Style)

SAMPLE

8	MT10-	2000/	1600-	PN/PN-	1
1	2	3	4	5	6

CONNECTOR CODE CHART


Connector Style	Connector Code
SMA Female	SF
SMA Male	SM
PC Pins	PN
Special	XX

MT Series Discrete Element, Micro-Miniature Lowpass Filters

Selectivity- The stopband performance of a filter determines the number of sections required. Use the following graph.

The graph provides the lowpass filter stopband attenuation as a function of the number of filter sections and the stopband frequency F_s normalized to the 3dB cutoff frequency $F_{-3 \text{ dB}}$

EXAMPLE

Determine the number of sections required to achieve an attenuation of 30 dB at 2800 MHz (F_s) with a 3 dB cutoff frequency (F_{s3dB}) of 2000 MHz

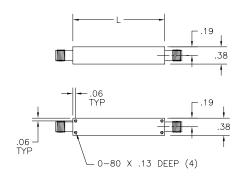
- 3dB Cutoff Frequency, $F_{-3dB} = 2000 \text{ MHz}$
- Stopband rejection frequency $F_s = 2800 \text{ MHz}$
- Attenuation value of stopband= 30dB

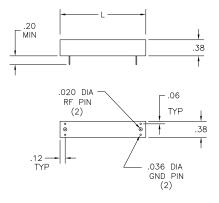
Step 1. Normalize stopband frequency (F_s) to the -3 dB cutoff frequency F_{-3dB}

$$\frac{F_s}{F_{-3dB}} = \frac{2800MHz}{2000MHz} = 1.4$$

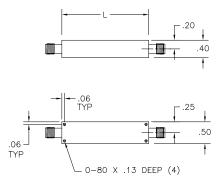
<u>Step 2.</u> Determine the minimum number of sections required to provide a stopband attenuation equal to or greater than 30dB.

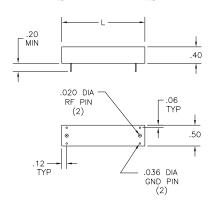
Note from the intersection of 1.4 on the X- axis and curve N=4 the attenuation (Y-axis) is -46 dB and N=3 is approx -28dB. Therefore the minimum number of sections required is N=4


*Note: For illustration purposes only. Consult factory for specific information.


MT Series

Discrete Element, Micro-Miniature Lowpass Filters


STYLE 1 CONNECTORS


STYLE 1 PINS

STYLE 2 CONNECTORS

STYLE 2 PINS

Model	Number	Style	Width	Height	Length
	of Sections		(IN.)	(IN.)	(IN.)
MT Series	3	1	0.38	0.38	0.75
MT Series	4-5	1	0.38	0.38	1.0
MT Series	6-7	2	0.50	0.40	1.5
MT Series	8-9	2	0.50	0.40	1.75
MT Series	10	2	0.50	0.40	2.0

MH Series Discrete Element, Miniature Highpass Filters

Microwave Filter Company's MH series of Highpass filters offer superior performance in a small package for a wide range of applications.

FEATURES:

- Available frequency range: 0.2 MHz to 1000 MHz
- Miniature package
- 3-10 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Frequency (MHz)	VSWR typical	Average Power (Watts, nominal)	Impedance (ohms)	No. of Sections
MH10	0.2-10	1.5:1	15	50 *	3-9
MH20	10-200	1.5:1	15	50 *	3-9
MH30	150-1000	1.5:1	10	50 *	3-9

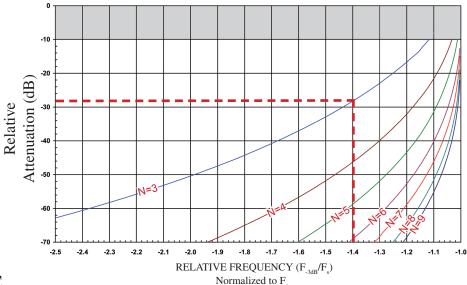
*75 Ω is available

MODEL DESIGNATION

_	
Code	Description
1	Number of Sections
2	Model Number
3	Start of Stopband Frequency (MHz)
4	3dB Cut -off Frequency (MHz)
5	Connector Code (Input/Output)
6	Mechanical Outline (Style)

SAMPLE

8	MH20-	50/	70-	SF/ SF-	1
1	2	3	4	5	6


CONNEC	TOR CODE CHA	RT
Connector Style	Connector Code	Style
"N" Female	NF	1
"N" Male	NM	1
BNC Female	BF	1
BNC Male	BM	1
TNC Female	TF	1
TNC Male	TM	1
SMA Female	SF	1,2
SMA Male	SM	1,2
PC Pins	PN	1,2
Special	XX	1,2

MH Series Discrete Element, Miniature Highpass Filters

Selectivity- The stopband performance of a filter determines the number of sections required. Use the following graph.

The graph provides the highpass filter stopband attenuation as a function of the number of filter sections and the 3 dB cutoff frequency $F_{-3 dB}$ normalized to the stopband frequency, F_s

EXAMPLE

Determine the number of sections required to achieve an attenuation of 30 dB at 100 MHz (F_s) with a 3 dB cutoff frequency ($F_{-3 \text{ dB}}$) of 140 MHz

- 3 dB Cutoff Frequency, $F_{-3 dB} = 140 \text{ MHz}$
- Stopband rejection frequency $F_s = 100 \text{ MHz}$
- Attenuation value of stopband= 30 dB

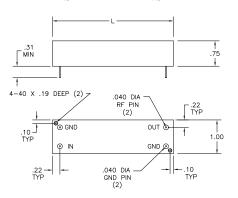
Step 1. Normalize -3 dB cutoff frequency $F_{-3 dB}$ to the stopband frequency (F_s)

$$\frac{F_{-3dB}}{F_s} = \frac{140MHz}{100MHz} = 1.4$$

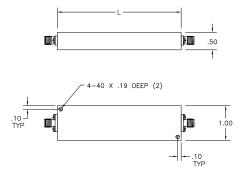
<u>Step 2.</u> Determine the minimum number of sections required to provide a stopband attenuation equal to or greater than 30 dB.

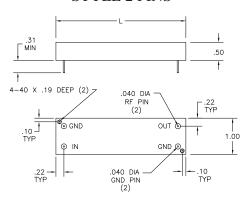
Note from the intersection of 1.4 on the X- axis and curve N=4 the attenuation (Y-axis) is -46 dB and N=3 is approx -28 dB. Therefore the minimum number of sections required is N=4

*Note: For illustration purposes only. Consult factory for specific information.



MH Series Discrete Element, Miniature Highpass Filters


STYLE 1 CONNECTORS


STYLE 1 PINS

STYLE 2 CONNECTORS

STYLE 2 PINS

Model	Number of Sections	Style	Width (IN.)	Height (IN.)	Length (IN.)
MH Series	3-6	1	1.00	0.75	2.38
MH Series	7-10	1	1.00	0.75	3.58
MH Series	3-6	2	1.00	0.50	2.38
MH Series	7-10	2	1.00	0.50	3.58


MD Series

Discrete Element, Micro-Miniature Highpass Filters

Microwave Filter Company's MD series of Highpass filters offer superior performance in a small package for a wide range of applications.

FEATURES:

- Available frequency range: 500 MHz to 6000 MHz
- Micro-Miniature package
- 3-10 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

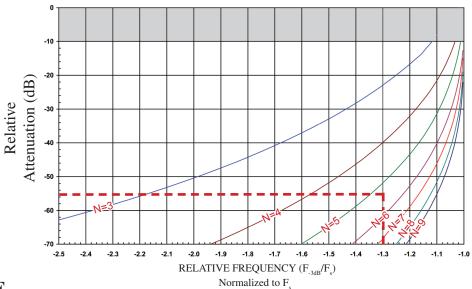
ſ	Model	Frequency	VSWR	Average Power	Impedance	No. of
	No.	(MHz)	typical	(Watts, nominal)	(ohms)	Sections
	MD10	500-6000	1.5:1	1	50	3-9

MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Model Number
3	Start of Stopband Frequency (MHz)
4	3dB Cut -off Frequency (MHz)
5	Connector Code (Input/Output)
6	Mechanical Outline (Style)

CONNECTOR	CODE CHART
Connector Style	Connector Code
SMA Female	SF
SMA Male	SM
PC Pins	PN
Special	XX

SAMPLE


8	MD10-	100/	150-	SF/SF-	_1
1	2.	3	4	5	6

MD Series Discrete Element, Micro-Miniature Highpass Filters

Selectivity- The stopband performance of a filter determines the number of sections required. Use the following graph.

The graph provides the lowpass filter stopband attenuation as a function of the number of filter sections and the 3dB cutoff frequency F_{3dB} normalized to the stopband frequency, F_s

EXAMPLE

Determine the number of sections required to achieve an attenuation of 55 dB at 1000 MHz (F_s) with a 3 dB cutoff frequency ($F_{-3,dB}$) of 1300 MHz

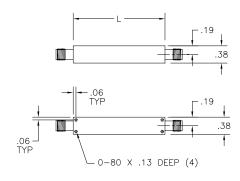
- 3 dB Cutoff Frequency, $F_{-3 \text{ dB}} = 1300 \text{ MHz}$
- Stopband rejection frequency $F_s = 1000 \text{ MHz}$
- Attenuation value of stopband= 55 dB

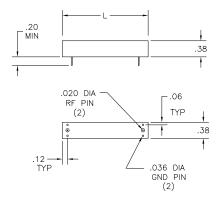
Step 1. Normalize -3 dB cutoff frequency $F_{-3 \text{ dB}}$ to the stopband frequency (F_s)

$$\frac{F_{\text{-3dB}}}{F_{\text{s}}} = \frac{1300\text{MHz}}{1000\text{MHz}} = 1.3$$

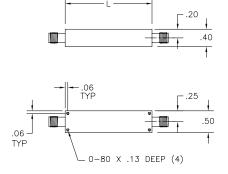
Step 2. Determine the minimum number of sections required to provide a stopband attenuation equal to or greater than 55 dB.

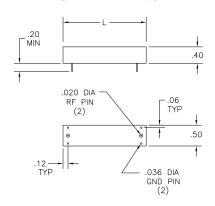
Note from the intersection of 1.3 on the X- axis and curve N=5 the attenuation (Y-axis) is -52 dB and N=6 is approx -62 dB. Therefore the minimum number of sections required is N=6


*Note: For illustration purposes only. Consult factory for specific information.


MD Series

Discrete Element, Micro-Miniature Highpass Filters


STYLE 1 CONNECTORS


STYLE 1 PINS

STYLE 2 CONNECTORS

STYLE 2 PINS

Model	Number	Style	Width	Height	Length
	of Sections		(IN.)	(IN.)	(IN.)
MD Series	3	1	0.38	0.38	0.75
MD Series	4-5	1	0.38	0.38	1.0
MD Series	6-7	2	0.50	0.40	1.5
MD Series	8-9	2	0.50	0.40	1.75
MD Series	10	2	0.50	0.40	2.0

MB Series

Discrete Element Miniature Bandpass Filters

Microwave Filter Company's MB series of miniature bandpass filters utilize high quality components for narrow and wide band filter applications.

- Available frequency range: 0.5 MHz to 250 MHz
- Miniature package
- 3-9 section designs are standard
- Call the factory for custom designs

BMB10-45/1.5-NFINE-1 IN BANDPASS FILTER IN BANDPASS FILTER MICROWAVE FILTER CO., INC. MICROWAVE FILTER CO., INC.

SPECIFICATIONS

Model No.	Frequency (MHz)		l	Average Power (Watts, nominal)		No. of Sections
MB10	0.5-500	3-50	1.5:1	15	50 *	3-9

*75 Ω is available

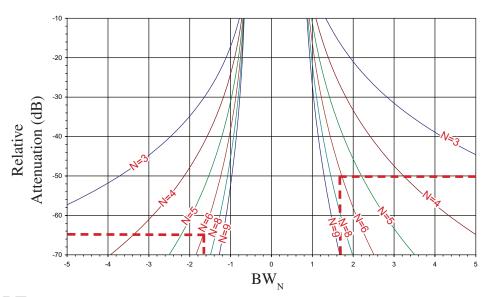
MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Series
3	Center Frequency (MHz)
4	3 dB Bandwidth (MHz)
5	Connector Code (Input/Output) (see chart)
6	Mechanical Outline (Style)

SAMPLE

8	MB10	100/	10-	PN/PN-	1
1	2	3	4	5	6

CONNECTOR CODE CHART					
Connector Style	Connector Code	Style			
"N" Female	NF	1			
"N" Male	NM	1			
BNC Female	BF	1			
BNC Male	BM	1			
TNC Female	TF	1			
TNC Male	TM	1			
SMA Female	SF	1,2			
SMA Male	SM	1,2			
PC Pins	PN	1,2			
Special	XX	1,2			


MB Series Discrete Element Miniature Bandpass Filters

The curves below show the attenuation as a function of the normalized 3dB bandwidth. The following formula is used to predict the attenuation for a given number of sections:

Number of normalized 3 dB bandwidths from center frequency, $BW_N = -$

Rejection Frequency (MHz) – Center Frequency (MHz)

3 dB Bandwidth (MHz)

EXAMPLE

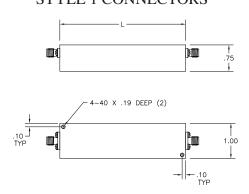
Determine minimum attenuation levels at 225 MHz and 275 MHz for the following filter:

Center Frequency = 250 MHz Minimum 3 dB Bandwidth = 15 MHz Number of sections = 6

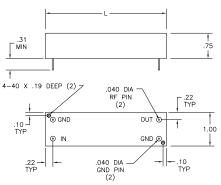
Solution:

3 dB bandwidths from Fc,(BW_N) =
$$\frac{(225 - 250)/15 = -1.67 \text{ BW}_{\text{N}}}{(275 - 250)/15 = +1.67 \text{ BW}_{\text{N}}}$$

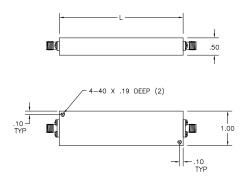
From the curve above: -1.67 BW = 65 dB+1.67 BW = 50 dB

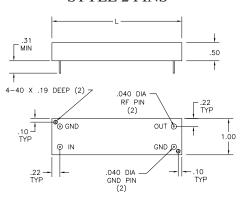

*Note: For illustration purposes only. Consult factory for specific information.

E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057



MB Series Discrete Element Miniature Bandpass Filters


STYLE 1 CONNECTORS


STYLE 1 PINS

STYLE 2 CONNECTORS

STYLE 2 PINS

Model	Number	Style	Width	Height	Length
	of Sections		(IN.)	(IN.)	(IN.)
MB Series	3-5	1	1.00	0.75	2.38
MB Series	6-9	1	1.00	0.75	3.58
MB Series	3-5	2	1.00	0.50	2.38
MB Series	6-9	2	1.00	0.50	3.58

MP Series

Discrete Element Micro-Miniature Bandpass Filters

Microwave Filter Company's MP series micro-miniature bandpass filters utilize high quality components for narrow and wide band filter applications.

FEATURES:

- Available frequency range: 500 MHz to 6000 MHz
- Micro-Miniature package
- 3-9 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Frequency (MHz)	3 dB BW (percent)		Average Power (Watts, nominal)		No. of Sections
MP10	500-6000	3-50	1.5:1	1	50	3-9

MODEL DESIGNATION

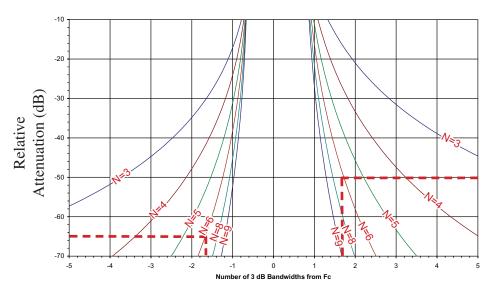
Code	Description
1	Number of Sections
2	Series
3	Center Frequency (MHz)
4	3 dB Bandwidth (MHz)
5	Connector Code (Input/Output) (see chart)
6	Mechanical Outline (Style)

Connector Code
SF
SM
PN
XX

SAMPLE

8	MP10-	100/	20-	SF/SF-	1
1	2	3	4		6

E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057


MP Series Discrete Element Micro-Miniature Bandpass Filters

The curves below show the attenuation as a function of the normalized 3dB bandwidth. The following formula is used to predict the attenuation for a given number of sections:

Number of normalized 3 dB Rejection bandwidths from center frequency, $BW_N = \frac{1}{2}$

Rejection Frequency (MHz) – Center Frequency (MHz)

3 dB Bandwidth (MHz)

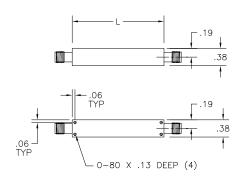
EXAMPLE

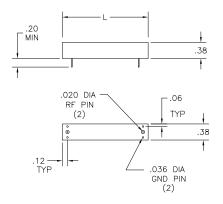
Determine minimum attenuation levels at 225 MHz and 275 MHz for the following filter:

Center Frequency = 250 MHz Minimum 3 dB Bandwidth = 15 MHz Number of sections = 6

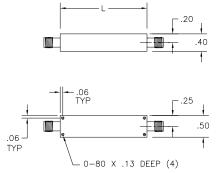
3 dB bandwidths from Fc,(BW_N) =
$$\frac{(225 - 250)/15 = -1.67 \text{ BW}}{(275 - 250)/15 = +1.67 \text{ BW}}$$

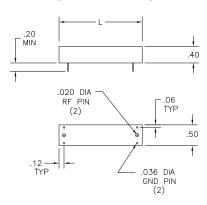
From the curve above:
$$-1.67 \text{ BW} = 65 \text{ dB}$$
$$+1.67 \text{ BW} = 50 \text{ dB}$$


*Note: For illustration purposes only. Consult factory for specific information.


MP Series

Discrete Element Micro-Miniature Bandpass Filters


STYLE 1 CONNECTORS


STYLE 1 PINS

STYLE 2 CONNECTORS

STYLE 2 PINS

Model	Number of Sections	Style	Width (IN.)	Height (IN.)	Length (IN.)
MP Series	3	1	0.38	0.38	0.75
MP Series	4-5	1	0.38	0.38	1.0
MP Series	6-7	2	0.50	0.40	1.5
MP Series	8-9	2	0.50	0.40	1.75

MF Series Discrete Element, Miniature Band Reject Filters

Microwave Filter Company's MF series of Band Reject filters offer superior performance in a small package for a wide range of applications.

FEATURES:

- Available frequency range: 10 MHz to 100 MHz
- Miniature package
- 3-6 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

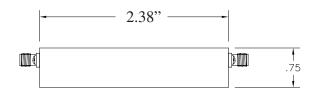
Model	Center Freq.	3 dB BW	Typical Notch	VSWR	Average Power	Impedance	No. of
No.	(MHz)	(percent of Fc)	Attenuation (db)	typical	(Watts, nominal)	(ohms)	Sections
MF10	10-100	5-20	50	1.5:1	1	50 *	3-6

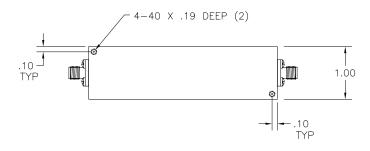
*75 Ω is available

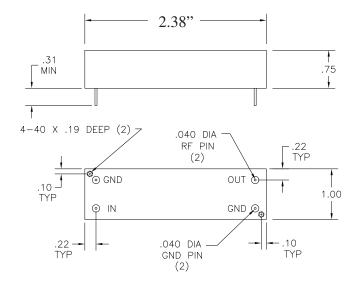
MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Model Number
3	Center Frequency of Notch (MHz)
4	3dB Relative Bandwidth (MHz)
5	Connector Code (Input/Output)
6	Mechanical Outline (Style)

SAMPLE


4	MF10-	50/	5-	SF/SF-	1
1	2	3	4	5	6


CONNECTOR CODE CHART				
Connector Style	Connector Code	Style		
"N" Female	NF	1		
"N" Male	NM	1		
BNC Female	BF	1		
BNC Male	BM	1		
TNC Female	TF	1		
TNC Male	TM	1		
SMA Female	SF	1,2		
SMA Male	SM	1,2		
PC Pins	PN	1,2		
Special	XX	1,2		


MF Series Discrete Element, Miniature Band Reject Filters

STYLE 1 CONNECTORS

STYLE 1 PINS

Microwave Filter Company's Iris coupled, Combline and Interdigital bandpass filters are fixed tuned filters that feature sharp stopband rejection and lower losses than comparable discrete element or tubular (transmission line) bandpass filters. Parallel coupled, distributed round rod resonators provide high-Q with small size and excellent bandpass response.

These units are particularly rugged and well suited for military and severe environmental conditions. The type of filter selected is usually determined by the desired 3 dB bandwidth percentage of center frequency.

Design Curves

The normalized bandwidth attenuation curves included here-in are representative only and are not meant to be definitive with regard to the filter parameters. Many other variables allow the designer to tailor the transfer function to meet the custom needs of a requirement

MN Series Iris Coupled Bandpass Filters

Microwave Filter Company's MN series of Iris coupled filters offer superior performance in a small package for narrow bandwidth applications.

FEATURES:

- Available frequency range: 300 MHz to 26.5 GHz
- Low-profile package
- Wide range of 3 dB bandwidths (0.1-3%)
- 2-18 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Frequency	3 dB BW	VSWR	No. of Sections
	(GHz)	(percent)	typical	
MN10	0.3 to 1.5	0.1-3	1.5:1	2-18
MN20	1.5 to 6	0.1-3	1.5:1	2-18
MN30	4 to 10	0.1-3	1.5:1	2-18
MN40	8 to 18	0.1-3	1.5:1	2-18
MN50	18 to 26.5	0.1-3	1.5:1	2-18

MODEL DESIGNATION

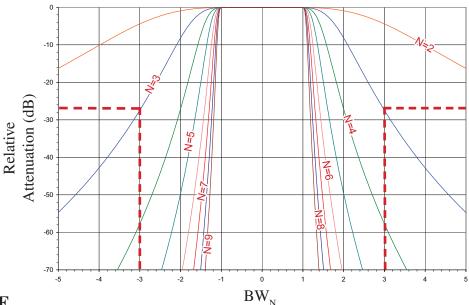
Code	Description
1	Number of Sections
2	Model Number
3	Center Frequency (GHz)
4	3 dB Bandwidth (MHz)
5	Connector Code (Input/Output)

SAMPLE

5	<u>MN30</u> -	5.0/	180-	NF/NF
1	2	3	4	5

CONNECTOR CODE CHART

Connector Style	Connector Code
"N" Female	NF
"N" Male	NM
BNC Female	BF
BNC Male	BM
TNC Female	TF
TNC Male	TM
SMA Female	SF
SMA Male	SM
PC Mounting	PC
Special	XX


MN Series Iris Coupled Bandpass Filters

The curves below show the attenuation as a function of the normalized 3dB bandwidth. The following formula is used to predict the attenuation for a given number of sections:

Number of normalized 3 dB bandwidths from center frequency, $BW_N =$

Rejection Frequency (MHz) – Center Frequency (MHz)

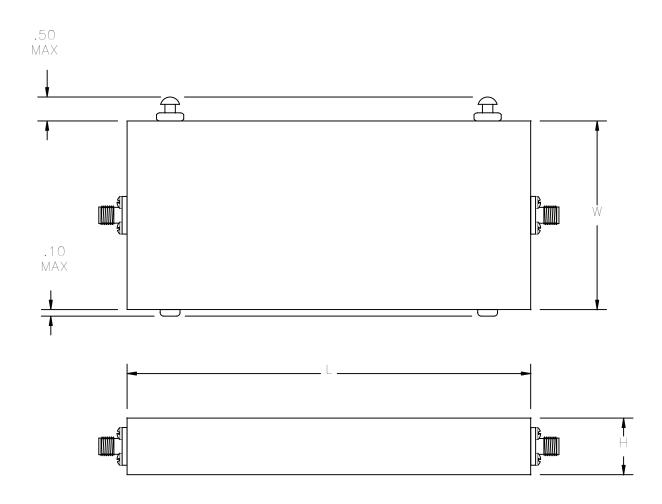
3 dB Bandwidth (MHz)

EXAMPLE

Determine minimum attenuation levels at 2482 MHz and 2518 MHz for the following filter:

Center Frequency = 2500 MHz Minimum 3 dB Bandwidth = 6 MHz Number of sections = 3

Solution:


3 dB bandwidths from
$$F_c$$
, $(BW_N) = \frac{(2482 - 2500)/16 = -3 BW_N}{(2518 - 2500)/6 = +3 BW_N}$

From the curve above:
$$-3 \text{ BW}_{N} = 27 \text{ dB}$$

+3 BW_N = 27 dB

^{*}Note: For illustration purposes only. Consult factory for specific information.

MN Series Iris Coupled Bandpass Filters

Model	Width*(IN.)	Height (IN.)	Length (IN.)	
MN10	2.0 - 5.0	.75	SEE CALCULATIONS	ESTIMATED L - [N(PS)] + [N(D)] + H
MN20	0.75 - 2.0	.625	SEE CALCULATIONS	WHERE:
MN30	.37575	.437	SEE CALCULATIONS	N = # OF SECTIONS PS = H(.75)
MN40	.187375	.375	SEE CALCULATIONS	D = H(.126)
MN50	.125187	.125	SEE CALCULATIONS	* LOWER FREQUENCY = LARGER W

MC Series Combline Bandpass Filters

Microwave Filter Company's MC series of Combline filters offer superior performance in a small package for narrow bandwidth applications.

FEATURES:

- Available frequency range: 300 MHz to 26.5 GHz
- Low-profile package
- Wide range of 3 dB bandwidths (1-20%)
- 2-18 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Frequency (GHz)	3 dB BW (percent)	VSWR typical	No. of Sections
MC10	0.3 to 1.5	1-20	1.5:1	2-18
MC20	1.5 to 6	1-20	1.5:1	2-18
MC30	4 to 10	1-20	1.5:1	2-18
MC40	8 to 18	1-20	1.5:1	2-18
MC50	18 to 26.5	1-20	1.5:1	2-18

MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Model Number
3	Center Frequency (GHz)
4	3 dB Bandwidth (MHz)
5	Connector Code (Input/Output)

SAMPLE

5	MC30-	5.0/	800-	NF/NF
1	2	3	4	5

CONNECT	OR CODE CHA	RT
Connector Style	Connector Code	Style
"N" Female	NF	1
"N" Male	NM	1
BNC Female	BF	1
BNC Male	BM	1
TNC Female	TF	1
TNC Male	TM	1
SMA Female	SF	1,2
SMA Male	SM	1,2
PC Pins	PN	1,2
Special	XX	1,2

MC Series Combline Bandpass Filters

The curves below show the attenuation as a function of the normalized 3dB bandwidth. The following formula is used to predict the attenuation for a given number of sections:

Number of normalized 3 dB bandwidths from center frequency, $BW_N = -$

Rejection Frequency (MHz) – Center Frequency (MHz)

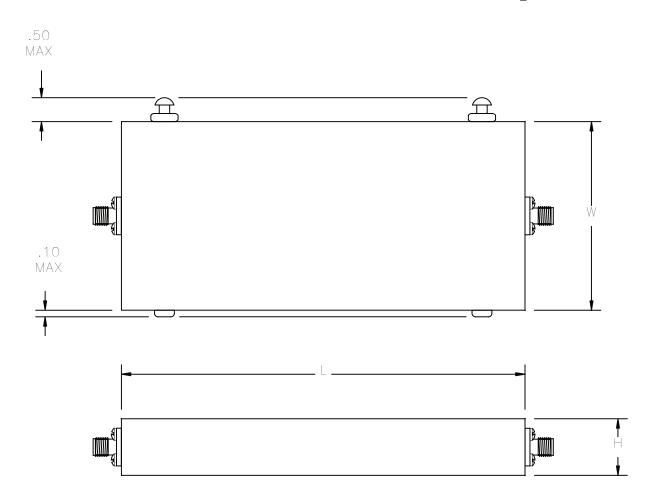
3 dB Bandwidth (MHz)

EXAMPLE

Determine minimum attenuation levels at 2482 MHz and 2518 MHz for the following filter:

Center Frequency = 2500 MHz Minimum 3 dB Bandwidth = 6 MHz Number of sections = 3

Solution:


3 dB bandwidths from
$$F_c$$
, $(BW_N) = \frac{(2482 - 2500)/16 = -3 BW_N}{(2518 - 2500)/6 = +3 BW_N}$

From the curve above:
$$-3 \text{ BW}_{N} = 27 \text{ dB}$$

+3 BW_N = 27 dB

*Note: For illustration purposes only. Consult factory for specific information.

MC Series Combline Bandpass Filters

Model	W * (IN.)	H (IN.)	L (IN.)
MC10	2 - 5	.75	SEE CALCULATIONS
MC20	0.75 - 2	.625	SEE CALCULATIONS
MC30	0.575	0.5	SEE CALCULATIONS
MC40	0.5	0.5	SEE CALCULATIONS
MC50	0.5	0.5	SEE CALCULATIONS

ESTIMATED L - [N(PS)] + [N(D)] + H WHERE: N = # OF SECTIONS PS = H(.75) D = H(.126) * LOWER FREQUENCY = LARGER W

MM Series Interdigital Bandpass Filters

Microwave Filter Company's MM series of Interdigital filters offer superior performance in a small package for medium bandwidth applications

FEATURES:

- Available frequency range: 300 MHz to 26.5 GHz
- Low-profile package
- Wide range of 3 dB bandwidths (10-70%)
- 2-18 section designs are standard
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Frequency (GHz)	3 dB BW (percent)	VSWR typical	No. of Sections
MM10	0.3 to 1.5	10-70	1.5:1	2-18
MM20	1.5 to 6	10-70	1.5:1	2-18
MM30	4 to 10	10-70	1.5:1	2-18
MM40	8 to 18	10-70	1.5:1	2-18
MM50	18 to 26.5	10-70	1.5:1	2-18

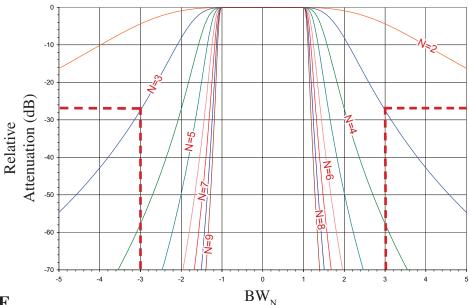
MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Model Number
3	Center Frequency (GHz)
4	3 dB Bandwidth (MHz)
5	Connector Code (Input/Output)

SAMPLE

5	MM30-	5.0/	1800-	NF/NF
1	2	3	4	5

CONNECTOR CODE CHART			
Connector Style	Connector Code	Style	
"N" Female	NF	1	
"N" Male	NM	1	
BNC Female	BF	1	
BNC Male	BM	1	
TNC Female	TF	1	
TNC Male	TM	1	
SMA Female	SF	1,2	
SMA Male	SM	1,2	
PC Pins	PN	1,2	
Special	XX	1,2	


MM Series Interdigital Bandpass Filters

The curves below show the attenuation as a function of the normalized 3dB bandwidth. The following formula is used to predict the attenuation for a given number of sections:

Number of normalized 3 dB bandwidths from center frequency, $BW_N = -\frac{1}{2}$

Rejection Frequency (MHz) – Center Frequency (MHz)

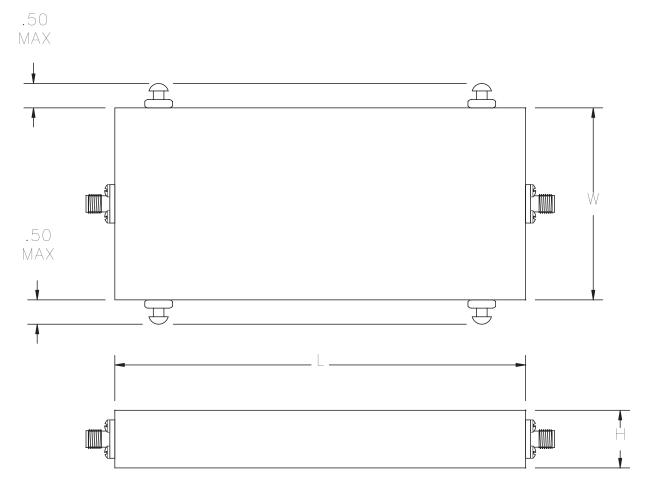
3 dB Bandwidth (MHz)

EXAMPLE

Determine minimum attenuation levels at 2482 MHz and 2518 MHz for the following filter:

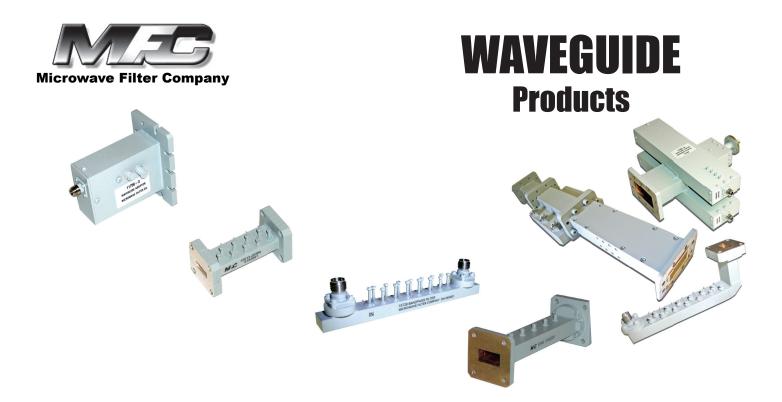
Center Frequency = 2500 MHz Minimum 3 dB Bandwidth = 6 MHz Number of sections = 3

Solution:


3 dB bandwidths from
$$F_c$$
, $(BW_N) = \frac{(2482 - 2500)/16 = -3 BW_N}{(2518 - 2500)/6 = +3 BW_N}$

From the curve above:
$$^{-3}$$
 BW $_{N} = 27$ dB $^{+3}$ BW $_{N} = 27$ dB

^{*}Note: For illustration purposes only. Consult factory for specific information.


MM Series Interdigital Bandpass Filters

	Length (IN.)	Height (IN.)	Width* (IN.)	Model	
ESTIMATE	SEE CALCULATIONS	0.75	3.0- 10.0	MM10	
WH	SEE CALCULATIONS	0.625	0.75 - 3.0	MM20	
	SEE CALCULATIONS	0.5	0.575	MM30	
	SEE CALCULATIONS	0.5	0.5	MM40	
* LOWER F	SEE CALCULATIONS	0.5	0.5	MM50	

ESTIMATED L - [N(PS)] + [N(D)] + H
WHERE:

N = # OF SECTIONS
PS = H(.75)
D = H(.126)
* LOWER FREQUENCY = LARGER W

Microwave Filter Company, Inc. offers a complete line of waveguide filter designs including bandpass, band reject and diplexed models as well as adapters and other accessories. Available waveguide sizes range from WR22 to WR650 covering the frequency spectrum from 1 GHz to 50 GHz with bandwidths up to 15%. MFC bandpass designs exhibit excellent out-of-band rejection making them ideally suited to receiver front-end or transmitter applications. Designs are available with 2 to 18 resonator sections to satisfy the most severe requirements. Construction materials include copper, aluminum and invar and may be folded to meet with specific customer configurations.

Design Curves

The normalized bandwidth attenuation curves included here-in are representative only and are not meant to be definitive with regard to the filter parameters. Many other variables allow the designer to tailor the transfer function to meet the custom needs of a requirement.

WMN Series

Narrow Bandwidth

Iris Coupled Waveguide Bandpass Filters

Microwave Filter Company's WMN series of waveguide bandpass filters use iris type apertures for narrow bandwidth applications.

FEATURES:

- Available waveguide sizes WR650 to WR22
- Copper construction standard (Aluminum available)
- Wide range of 3 dB bandwidths (0.1-2%)
- 2-18 section designs are standard
- Call the factory for custom designs

MODEL DESIGNATION

	i
Code	Description
1	Number of Sections
2	Series
3	WR Waveguide No.
4	Center Frequency (GHz)
5	3 dB Bandwidth (MHz)
6	Connector Code (Input/Output) (see chart)

SAMPLE

5	WMN	75-	12.0/	120-	CPR75/CPRG75
1	2	3	4	5	6

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

CONNECTOR CODE CHART								
Connector Style	Connector Code							
"N" Female	NF							
"N" Male	NM							
SMA Female	SF							
SMA Male	SM							
2.4 mm Female	24F							
2.4 mm Male	24M							
2.92 mm Female	KF							
2.92 mm Male	KM							
CPR Flange	CPR#							
CPRG Flange	CPRG#							
CMR Flange	CMR#							
Mil-STD Flange	M3922/#							
Cover Flange	C#							
Choke Flange	CH#							

WMM Series

Medium Bandwidth

Post-Iris Coupled Waveguide Bandpass Filters

Microwave Filter Company's WMM series of waveguide bandpass filters utilize round post apertures for medium bandwidth applications.

- Available waveguide sizes WR650 to WR22
- Copper construction standard, (Aluminum available)
- Wide range of 3 dB bandwidths (2-6%)
- 2-18 section designs are standard
- Call the factory for custom designs

MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Series
3	WR Waveguide No.
4	Center Frequency (GHz)
5	3 dB Bandwidth (MHz)
6	Connector Code (Input/Output) (see chart)

SAMPLE

5	WMM	75-	12.0/	600-	CPR75/CPRG75
1	2	3	4	5	6

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

CONNECTOR CODE CHART								
Connector Style	Connector Code							
"N" Female	NF							
"N" Male	NM							
SMA Female	SF							
SMA Male	SM							
2.4 mm Female	24F							
2.4 mm Male	24M							
2.92 mm Female	KF							
2.92 mm Male	KM							
CPR Flange	CPR#							
CPRG Flange	CPRG#							
CMR Flange	CMR#							
Mil-STD Flange	M3922/#							
Cover Flange	C#							
Choke Flange	CH#							

WMW Series

Wide Bandwidth

Septum Coupled Waveguide Bandpass Filters

Microwave Filter Company's WMW series of waveguide bandpass filters use septum blade apertures for wide bandwidth applications.

- Available waveguide sizes WR650 to WR22
- Copper construction standard, (Aluminum available)
- Wide range of 3 dB bandwidths (5-15%)
- 2-18 section designs are standard
- Call the factory for custom designs

MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Series
3	WR Waveguide No.
4	Center Frequency (GHz)
5	3 dB Bandwidth (MHz)
6	Connector Code (Input/Output) (see chart)

SAMPLE

5	WMW	75-	12.0/	1200-	CPR75/CPRG75
1	2	3	4	5	6

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

CONNECTOR CODE CHART								
Connector Style	Connector Code							
"N" Female	NF							
"N" Male	NM							
SMA Female	SF							
SMA Male	SM							
2.4 mm Female	24F							
2.4 mm Male	24M							
2.92 mm Female	KF							
2.92 mm Male	KM							
CPR Flange	CPR#							
CPRG Flange	CPRG#							
CMR Flange	CMR#							
Mil-STD Flange	M3922/#							
Cover Flange	C#							
Choke Flange	CH#							

CONNECTOD CODE CHADT

WCA Series Waveguide-to-Coax Adaptors

MFC offers a large selection of Waveguide-to-Coaxial adaptors. The WCA series of adaptors are used to transition from coaxial (TEM) mode to the dominant waveguide (TE10) mode.

WCA Series Waveguide-to-Coax adaptors utilize sturdy copper construction. This combines long service life with the lowest possible insertion loss for a device of this type. If weight is an issue, WCA series adaptors can be built using 6061-T6 aluminum.

Used for applications requiring good VSWR characteristics over the entire waveguide band, WCA series adaptors are available with 1.25:1 VSWR over the operating band of the waveguide.

FEATURES:

- Rugged Copper construction standard (Aluminum available)
- Low VSWR (1.25 max)
- High power custom units available

MODEL DESIGNATION

Code	Description
4	3.6. 1.137

1 Model No.

2 Connector Code (waveguide/ Coax) (see chart - pg 50)

SAMPLE

 $\frac{\text{WCA430}}{1} - \frac{\text{CPR430/NF}}{2}$

Model #	Frequency (GHz)	Waveguide Size
WCA 430	1.7-2.6	WR 430
WCA 284	2.6-3.95	WR 284
WCA 229	3.3-4.9	WR 229
WCA 187	3.95-5.85	WR 187
WCA 159	4.9-7.05	WR 159
WCA 137	5.85-8.20	WR 137
WCA 112	7.05-10	WR 112
WCA 90	8.2-12.4	WR 90
WCA 75	10-15	WR 75
WCA 62	12.4-18	WR 62
WCA 42	18-26.5	WR 42
WCA 28	26.5-40	WR 28
WCA 22	33-50	WR 22

WCA SeriesWaveguide-to-Coax Adaptors

CONNECTOR CODE CHART

Connector Style	Connector Code
"N" Female	NF
"N" Male	NM
SMA Female	SF
SMA Male	SM
2.4 mm Female	24F
2.4 mm Male	24M
2.92 mm Female	KF
2.92 mm Male	KM
7/8" EIA	78
7/16" DIN	76D
CPR Flange	CPR#
CPRG Flange	CPRG#
CMR Flange	CMR#
UG Flange	UG#
Cover Flange	C#
Choke Flange	CH#

	AVAILABLE CONNECTOR TYPES								AVAILABLE FLANGE TYPES							
	NF	NM	SF	SM	24F	24M	KF	KM	78	76D	CPR	CPRG	CMR	UG	С	СН
WCA430	X	X	X	X					X	X	X	X				
WCA284	X	X	X	X					X	X	X	X	X	X		
WCA229	X	X	X	X					X	X	X	X	X			
WCA187	X	X	X	X						X	X	X	X	X		
WCA159	X	X	X	X							X	X	X			
WCA137	X	X	X	X			X	X			X	X	X	X		
WCA112	X	X	X	X			X	X			X	X	X	X	X	X
WCA90			X	X	X	X	X	X			X	X	X	X	X	X
WCA75			X	X	X	X	X	X			X	X		X	X	X
WCA62			X	X	X	X	X	X						X	X	X
WCA42					X	X	X	X					·	X	X	X
WCA28					X	X	X	X						X	X	X
WCA22					X	X							·	X	X	

E-Mail: mfcsales@microwavefilter.com Web: www.microwavefilter.com 800-448-1666 • 315-438-4700 6743 KINNE STREET, E. SYRACUSE, NY 13057

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

Compact Package

FEATURES:

Model No.

WRJA

WR22

Rotatable Joint Adaptor

Model WRJA

MFC offers a line of integrated rotatable joint/waveguide to coaxial adaptors for SATCOM and Radar applications. These devices are ideal for low power, mobile and shipboard satellite tracking systems. This product is especially useful where low-speed, low duty cycle rotation or partial rotation is necessary.

This product should not be confused with the significantly more expensive Rotary joint. Rotary joint products typically are engineered for continuous duty, pressurized, and other high performance conditions, and may meet MIL-E-5400 Class II. These are often far too expensive for applications where these specifications are just not required.

• Available Waveguide Sizes: WR340 to WR42

• Multiple connector and flange options available

SPECIFICATIONS

3 dB BW

(percent)

1-8

VSWR

typical

1.5:1

• Call the factory for custom designs

Frequency

(GHz)

1.2 to 50

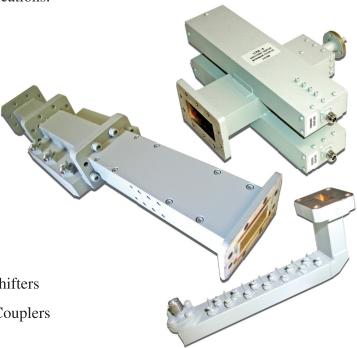
MODEL DESIGNATION

MODEL DESIGNATION					
Code	Description				
1	Model Number				
2	Center Frequency (GHz)				
3	VSWR BW (MHz)				
4	Flange Code				
5	Connector Code				
	SAMPI F				

SAMPLE

WRJA	2.5	_ 5	CPR	SM
1	2	3	4	5

•	1.4	, 10 2	/		. 0	1.			1 11	utt		1	,	2	3	,	4
										1			3		+		
WAVEG SIZ			A	VAI	LAB		CONN PES	NEC'	TOR			A	VAIL	ABLE TYPE		NGE	C
		NF	NM	SF	SM	24F	24M	KF	KM	78	76D	CPR	CPRG	CMR	UG	С	СН
WR6	50	X	X	X	X					X	X	X	X				
WR4	30	X	X	X	X					X	X	X	X				
WR3	40	X	X	X	X					X	X	X	X				
WR2	84	X	X	X	X					X	X	X	X	X	X		
WR2	29	X	X	X	X					X	X	X	X	X			
WR1	87	X	X	X	X						X	X	X	X	X		
WR1	59	X	X	X	X							X	X	X			
WR1	37	X	X	X	X			X	X			X	X	X	X		
WR1	12	X	X	X	X			X	X			X	X	X	X	X	X
WR9	0			X	X	X	X	X	X			X	X	X	X	X	X
WR7	5			X	X	X	X	X	X			X	X		X	X	X
WR6	2			X	X	X	X	X	X						X	X	X
WR4	2					X	X	X	X						X	X	X
WR2	8					X	X	X	X						X	X	X


Average Power

1 Watt

Waveguide Assemblies

Microwave Filter Company, Inc. provides a wide array of custom waveguide assemblies that are designed, manufactured, and tested to customer specifications.

AVAILABLE PRODUCTS

- Integrated Filter Assemblies
- 90° and 180° Hybrid Couplers / Phase Shifters
- Crossguide and Broadwall Directional Couplers
- E and H plane Waveguide Bends
- Low Power Waveguide Terminations
- Custom Bend Assemblies / Comparators

ORDERING INFORMATION

Due to the custom nature of waveguide assemblies, a detailed quotation will be required. Please call the factory with technical requirements.

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

Frequency Range	Receive	Transmit		
AMPS-Full Band	824 – 849 MHz	869 – 894 MHz		
EGSM Band	880 – 915 MHz	925 – 960 MHz		
800 MHz SMR Band	806 – 821 MHz	851 – 866 MHz		
900 MHz SMR Band	869 – 901 MHz	935 – 940 MHz		
DCS Full-Band	1710-1785 MHz	1805-1880 MHz		
PCS Full-Band	1850-1910 MHz	1930-1990 MHz		
UTMS/IMT Full-Band	1920-1980 MHz	2110-2170 MHz		

Design Curves

for the following bands:

The normalized bandwidth attenuation curves included here-in are representative only and are not meant to be definitive with regard to the filter parameters. Many other variables allow the designer to tailor the transfer function to meet the custom needs of a requirement.

Microwave Filter Company's CWC series of Combiners allow simultaneous use of antennas and transmission line for co-located service providers.

FEATURES:

- Low Insertion Loss
- Wide Range of Channel Bandwidths Available
- High Carrier/ Carrier Isolation
- Call the factory for custom designs

CWC Series Combiners

SPECIFICATIONS

Model No.	Duplex Band	VSWR typical	Average Power per Carrier (Watts, nominal)	Impedance (Ohms)	Mutual Isolation (dB)
CWC10	AMPS/TACS	1.2:1	50	50	20-50 Available
CWC20	GSM/EGSM	1.2:1	50	50	20-50 Available
CWC30	800 MHz SMR	1.2:1	35	50	20-50 Available
CWC40	900 MHz SMR	1.2:1	35	50	20-50 Available
CWC50	DCS	1.2:1	25	50	20-50 Available
CWC60	PCS	1.2:1	25	50	20-50 Available
CWC70	UMTS/IMT	1.2:1	25	50	20-50 Available

MODEL DESIGNATION

MO	DEL DESIGNATION
Code	Description
1	Mutual Isolation (dB)
2	Series
3	Center-Frequency Carrier 1/Center- Frequency Carrier 2 (MHz)
4	3 dB Bandwidth (MHz)
5	Average Power per Carrier (Watts)
6	Connector Code (see chart)
	CARADIE

SAMPLE

50	CWC10-	820/840-	1.25/1.25-	20-	NF/NM
1	2	3	4	5	6

Contact Factory With Your Specific Needs:

- Electrical Performance
- Mechanical Configuration

CONNECTOR CODE CHART Connector Code Connector Style "N" Female NF "N" Male NM SF **SMA** Female **SMA Male** SM 7/8 EIA 78 1 5/8 EIA 58 7/16 DIN 76D

CWD Series
Duplexers

Microwave Filter Company's CWD series of Duplexers provide passive signal processing for all standard wireless bands.

- Low Insertion Loss
- Full Band or Channelized
- Exceptional Transmit/Receive Isolation
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Duplex Band	VSWR typical	Average Tx Power (Watts, nominal)	Impedance (Ohms)	Mutual Isolation (dB)
CWD10	A MDC/TA CC	• •			` ´
CWD10	AMPS/TACS	1.2:1	250	50	20-60 Available
CWD20	GSM/EGSM	1.2:1	250	50	20-60 Available
CWD30	800 MHz SMR	1.2:1	250	50	20-60 Available
CWD40	900 MHz SMR	1.2:1	250	50	20-60 Available
CWD50	DCS	1.2:1	100	50	20-60 Available
CWD60	PCS	1.2:1	100	50	20-60 Available
CWD70	UMTS/IMT	1.2:1	100	50	20-60 Available

MODEL DESIGNATION

11101	
Code	Description
1	Mutual Isolation (dB)
2	Series
3	Center Frequency Tx/ Center Frequency Rx (MHz)
4	3 dB Bandwidth Tx/ 3dB Bandwidth Rx (MHz)
5	Average Power (Watts)
6	Connector Code (Common/Tx/Rx) (see chart)

SAMPLE

60	<u>CWD20</u> -	902.5/947.5-	25/25-	250-	NF/NF/NF
1	2	3	4	5	6

CONNECTOR CODE CHART						
Connector Style	Connector Code					
"N" Female	NF					
"N" Male	NM					
SMA Female	SF					
SMA Male	SM					
7/8 EIA	78					
1 5/8 EIA	58					
7/16 DIN	76D					
	<u> </u>					

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

CWP Series Bandpass Filters

Microwave Filter Company's CWP series of Bandpass Filters offer high performance in a low profile package.

FEATURES:

- Low Insertion Loss & Group Delay
- Full Band or Channelized
- Monotonic or Elliptical Function Stopbands available
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Duplex Band	VSWR typical	Average Power (Watts, nominal)	Impedance (Ohms)	Number of Sections
CWP10	AMPS/TACS	1.2:1	250	50	3-11
CWP20	GSM/EGSM	1.2:1	250	50	3-11
CWP30	800 MHz SMR	1.2:1	250	50	3-11
CWP40	900 MHz SMR	1.2:1	250	50	3-11
CWP50	DCS	1.2:1	100	50	3-11
CWP60	PCS	1.2:1	100	50	3-11
CWP70	UMTS/IMT	1.2:1	100	50	3-11

MODEL DESIGNATION

Code	Description
1	Number of Sections
2	Series
3	Center Frequency (MHz)
4	3 dB Bandwidth (MHz)
5	Average Power (Watts)
6	Connector Code (see chart)

SAMPLE

5	CWP10-	840-	25-	250-	NF/NM
1	2	3	4	5	6

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

CONNECTOR CODE CHART					
Connector Style	Connector Code				
"N" Female	NF				
"N" Male	NM				
SMA Female	SF				
SMA Male	SM				
7/8 EIA	78				
1 5/8 EIA	58				
7/16 DIN	76D				

CWS Series Notch Filters

Microwave Filter Company's CWS series of Notch Filters provide a temperature stable, high Q bandstop response.

FEATURES:

- Deep, Symetrical Notch Response
- Small Mechanical Profile
- Low Passband Insertion Loss
- Call the factory for custom designs

SPECIFICATIONS

Model No.	Band	Passband VSWR typical	Average Passband Power (Watts, nominal)	Impedance (Ohms)	Notch depth (dB)
CWS10	AMPS/TACS	1.25:1	100	50	10-60
CWS20	GSM/EGSM	1.25:1	100	50	10-60
CWS30	800 MHz SMR	1.25:1	100	50	10-60
CWS40	900 MHz SMR	1.25:1	100	50	10-60
CWS50	DCS	1.25:1	50	50	10-60
CWS60	PCS	1.25:1	50	50	10-60
CWS70	UMTS/IMT	1.25:1	50	50	10-60

MODEL DESIGNATION

	1110	DEE DEDICT WITHOUT	
	Code	Description	
	1	Notch Depth (dB)	
2 Series			
	3	Notch Frequency (MHz)	
	4	3 dB Bandwidth (MHz)	
	5	Average Passband Power (Watts)	
	6	Connector Code (see chart)	

SAMPLE

30	CW10-	845-	10-	100-	NF/NM
1	2	3	4	5	6

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

CONNECTOR CODE CHART					
Connector Style	Connector Code				
"N" Female	NF				
"N" Male	NM				
SMA Female	SF				
SMA Male	SM				
7/8 EIA	78				
1 5/8 EIA	58				
7/16 DIN	76D				

TL SeriesTubular Lowpass Filters

Tubular Lowpass Filters are used to suppress harmonics and high frequency interference. Typical applications include low to medium power transmitter output filters and test equipment receiver inputs to improve signal quality.

Each Lowpass Filter is a precision machined captivated assembly. The tubular design integrates high and low impedance elements within the assembly – resulting in excellent electricial performance in the smallest possible configuration.

High/Low Impedance Lowpass Filters have many desirable traits when compared to other construction styles. Manipulating the characteristic impedance of a transmission line yields an inherently low-profile, axially connected filter with a minimal number of solder joints. The net result is high performance and reliability at a low per piece cost.

FEATURES:

- In-Line, low profile construction
- Temperature stable
- Custom units available
- High power units available
- Broad range of cutoff frequencies and rejection specifications
- Multiple connector and mounting options
- Low VSWR

COMMON SPECIFICATIONS:

Passband:	0.4 fc - 1.0 fc
Stopband:	
At 1.2 fc:	20 db Min Rejection
At 1.5 fc:	50 dB Typ Rejection
Power Rating:	
< 7 GHz:	50W Avg, 4 kW peak
> 7 GHz:	25W Avg, 1 kW peak
> 12 Ghz	10W Avg, 300W peak
Temperature:	-55° C to 150° C

MODEL DESIGNATION

Code	Description
1	Model Number
2	Cutoff Frequency (MHz)

SAMPLE

TL20-	1000
1	2

* See Tables for Model / Connector Options

Contact Factory With Your Specific Needs For:

- Electrical Performance
- Mechanical Configuration

TL SeriesTubular Lowpass Filters

TABLE 1

Model Selections & Specifications								
for TLN Series/N Connectors Model Cut-Off VSWR Loss Length* Weight*								
Number	MHz	(Max)	(dB)	in.(mm)	oz.(g)			
TL400N	400	1.3	< 0.2	14.6 (409)	7 (178)			
TL700N	700	1.3	< 0.2	9.9 (277)	6 (152)			
TL1000N	1000	1.3	< 0.2	7.4 (207)	5 (127)			
TL1500N	1500	1.3	< 0.2	5.8 (162)	4 (102)			
TL2000N	2000	1.3	< 0.2	4.7 (132)	4 (102)			
TL3000N	3000	1.3	< 0.2	4.8 (134)	3 (76)			
TL4000N	4000	1.4	< 0.2	4.0 (112)	3 (76)			
TL5000N	5000	1.4	< 0.2	3.6 (101)	3 (76)			
TL6000N	6000	1.4	< 0.2	3.2 (90)	3 (76)			
TL7000N	7000	1.4	< 0.2	3.0 (84)	3 (76)			
TL8000N	8000	1.5	< 0.3	3.2 (90)	3 (76)			
TL9000N	9000	1.5	< 0.3	3.0 (84)	3 (76)			

TABLE 2

for SMA (TLS Series) Model Cut-off VSWR Loss Length* Weight							
Number	(MHz)	(Max)	(dB)	in	oz.		
TL400S	400	1.3	< 0.2	14.6	8		
TL500S	500	1.3	< 0.2	14.4	6		
TL800S	800	1.3	< 0.2	9.5	6		
TL1000S	1000	1.3	< 0.2	7.5	5.5		
TL1200S	1200	1.3	< 0.3	6.2	5		
TL1500S	1500	1.3	< 0.4	6.2	4.7		
TL2000S	2000	1.3	<0.4	4.8	4.5		
TL3000S	3000	1.4	< 0.4	4.6	4		
TL4000S	4000	1.4	< 0.4	4	4		
TL5000S	5000	1.4	< 0.4	3.6	3.5		
TL6000S	6000	1.4	< 0.4	3.2	3.2		
TL7000S	7000	1.5	< 0.4	3	3		
TL8000S	8000	1.5	< 0.5	3.1	3		
TL9000S	9000	1.5	< 0.5	3	2.8		
TL10000S	10000	1.5	< 0.5	2.8	2.8		
TL12000S	12000	1.5	< 0.5	2.8	2.5		
TL15000S	15000	1.5	< 0.6	2	2.5		

^{*} Weights and lengths all nominal

HIGH "Q"

Cavity Bandpass & Notch Filters

MODELS 9494, 9507 & 9512 (Bandpass) MODELS 9604, 9607 & 9612 (Notch)

These high "Q" cavity filters utilize adjustable loop coupling and tunable resonators that provide tunability from Fo $\pm 1.5\%$.

These quarter wave cavity filters are ideal for cleaning up spurious transmit signals and can also be used as receive preselectors.

Invar tuning rods ensure temperature stable performance.

Standard models are available in single, double and triple cavity arrays covering a broad frequency range of 30 – 950 MHz.

Custom configurations are available upon request.

High Q Cavity Bandpass Filter

High Q Cavity Notch Filter

SPECIFICATIONS

Bandwidth Up to 3% (BW/Fo)

Return Loss 14 dB Min

Power Rating Up to 400 Watts* (9494 & 9604 series)

Up to 900 Watts* (9507 & 9607 series)

Up to 1200 Watts* (9512 & 9612 series)

Temperature Stability 0.0005 MHz / °C

Approximate Size Diameter x 1/4 Wavelength

Impedance 50 ohms

Alternate connectors are available upon request.

* Dependent upon passband insertion loss.

Lowpass RF Filters

19141 Series

Medium power lowpass RF filters from 50 MHz to 500 MHz. These filters are designed for use in any medium power application (100 Watts or less) that requires harmonic band rejection of up to 6X the fundamental (cut-off) frequency (Fc).

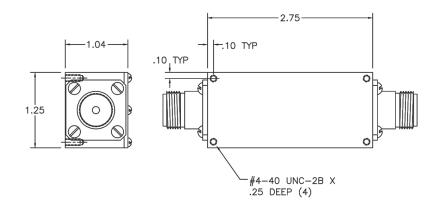
SPECIFICATIONS

Cut-Off Frequency Option: 50 – 500 MHz (See chart)

Passband Insertion Loss: 0.5 dB Max

Passband Return Loss: 16 dB Min

Passband Power (CW): 100 Watts Max


Rejection: 50 dB Min from 1.3(Fc) to 6.0(Fc)

Operating Temperature Range: -20° C to +70° C

Impedance: 50 Ohms

Connectors: N-female

Model	Frequency (Fc) MHz		
19141-50	50		
19141-100	100		
19141-150	150		
19141-200	200		
19141-250	250		
19141-300	300		
19141-350	350		
19141-400	400		
19141-450	450		
19141-500	500		

Additional Filter Technologies

Helical Resonator Filters

For narrow band applications, helical filters offer low insertion loss in package sizes smaller than comparable distributed element filters. Both bandpass and bandstop configurations are available.

Center Frequency Option: 50-1200 Mhz

3 dB Bandwidth: 0.5-5% No. of Sections: 3-8

Stripline/Microstrip Filters

Where size may be a concern and losses not as important, a stripline or microstrip filter offers a nice compromise. Circuit board tolerances can be tightly controlled minimizing variation in the production environment. Bandpass, bandstop, lowpass, and highpass designs are available.

Frequency range availability is from 1-18 GHz

No. of Sections: 3-9

Contact Sales with your specific requirements!

VSWR to Return Loss Chart

Table of return loss vs. voltage standing wave ratio

| RETURN
LOSS VSWR
(dB) |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 46.064 1.01 | 13.842 1.51 | 9.485 2.01 | 7.327 2.51 | 5.999 3.01 |
| 40.086 1.02 | 13.708 1.52 | 9.428 2.02 | 7.294 2.52 | 5.970 3.02 |
| 36.607 1.03 | 13.577 1.53 | 9.372 2.03 | 7.262 2.53 | 5.956 3.03 |
| 34.151 1.04 | 13.449 1.54 | 9.317 2.04 | 7.230 2.54 | 5.935 3.04 |
| 32.256 1.05 | 13.324 1.55 | 9.262 2.05 | 7.198 2.55 | 5.914 3.05 |
| 30.714 1.06 | 13.201 1.56 | 9.208 2.06 | 7.167 2.56 | 5.893 3.06 |
| 29.417 1.07 | 13.081 1.57 | 9.155 2.07 | 7.135 2.57 | 5.872 3.07 |
| 28.299 1.08 | 12.964 1.58 | 9.103 2.08 | 7.105 2.57 | 5.852 3.08 |
| 27.318 1.09 | 12.849 1.59 | 9.051 2.09 | 7.105 2.56 | 5.832 3.09 |
| 26.444 1.10 | 12.736 1.60 | 8.999 2.10 | 7.074 2.59 7.044 2.60 | 5.811 3.10 |
| | | | | |
| | 12.625 1.61 | 8.949 2.11 | 7.014 2.61 | 5.791 3.11 |
| 24.943 1.12 | 12.518 1.62 | 8.899 2.12 | 6.984 2.62 | 5.771 3.12 |
| 24.289 1.13 | 12.412 1.63 | 8.849 2.13 | 6.954 2.63 | 5.751 3.13 |
| 23.686 1.14 | 12.308 1.64 | 8.800 2.14 | 6.925 2.64 | 5.732 3.14 |
| 23.127 1.15 | 12.207 1.65 | 8.752 2.15 | 6.896 2.65 | 5.712 3.15 |
| 22.607 1.16 | 12.107 1.66 | 8.705 2.16 | 6.867 2.66 | 5.693 3.16 |
| 22.120 1.17 | 12.009 1.67 | 8.657 2.17 | 6.839 2.67 | 5.674 3.17 |
| 21.664 1.18 | 11.913 1.68 | 8.611 2.18 | 6.811 2.68 | 5.654 3.18 |
| 21.234 1.19 | 11.818 1.69 | 8.565 2.19 | 6.783 2.69 | 5.635 3.19 |
| 20.828 1.20 | 11.725 1.70 | 8.519 2.20 | 6.755 2.70 | 5.617 3.20 |
| 20.443 1.21 | 11.634 1.71 | 8.474 2.21 | 6.728 2.71 | 5.598 3.21 |
| 20.079 1.22 | 11.545 1.72 | 8.430 2.22 | 6.700 2.72 | 5.579 3.22 |
| 19.732 1.23 | 11.457 1.73 | 8.386 2.23 | 6.673 2.73 | 5.561 3.23 |
| 19.401 1.24 | 11.370 1.74 | 8.342 2.24 | 6.646 2.74 | 5.542 3.24 |
| 19.085 1.25 | 11.285 1.75 | 8.299 2.25 | 6.620 2.75 | 5.524 3.25 |
| 18.783 1.26 | 11.202 1.76 | 8.257 2.26 | 6.594 2.76 | 5.506 3.26 |
| 18.493 1.27 | 11.120 1.77 | 8.215 2.27 | 6.567 2.77 | 5.488 3.27 |
| 18.216 1.28 | 11.039 1.78 | 8.173 2.28 | 6.541 2.78 | 5.470 3.28 |
| 17.949 1.29 | 10.960 1.79 | 8.138 2.29 | 6.516 2.79 | 5.452 3.29 |
| 17.690 1.30 | 10.881 1.80 | 8.091 2.30 | 6.490 2.80 | 5.435 3.30 |
| 17.445 1.31 | 10.804 1.81 | 8.051 2.31 | 6.465 2.81 | 5.417 3.31 |
| 17.207 1.32 | 10.729 1.82 | 8.011 2.32 | 6.440 2.82 | 5.400 3.32 |
| 16.977 1.33 | 10.654 1.83 | 7.972 2.33 | 6.415 2.83 | 5.383 3.33 |
| 16.755 1.34 | 10.581 1.84 | 7.933 2.34 | 6.390 2.84 | 5.365 3.34 |
| 16.540 1.35 | 10.509 1.85 | 7.894 2.35 | 6.366 2.85 | 5.348 3.35 |
| 16.332 1.36 | 10.437 1.86 | 7.856 2.36 | 6.341 2.86 | 5.331 3.36 |
| 16.131 1.37 | 10.367 1.87 | 7.818 2.37 | 6.317 2.87 | 5.315 3.37 |
| 15.936 1.38 | 10.298 1.88 | 7.781 2.38 | 6.293 2.88 | 5.298 3.38 |
| 15.747 1.39 | 10.230 1.89 | 7.744 2.39 | 6.270 2.89 | 5.281 3.39 |
| 15.563 1.40 | 10.163 1.90 | 7.707 2.40 | 6.246 2.90 | 5.265 3.40 |
| 15.385 1.41 | 10.097 1.91 | 7.671 2.41 | 6.223 2.91 | 5.248 3.41 |
| 15.211 1.42 | 10.032 1.92 | 7.635 2.42 | 6.200 2.92 | 5.232 3.42 |
| 15.043 1.43 | 9.968 1.93 | 7.599 2.43 | 6.177 2.93 | 5.216 3.43 |
| 14.879 1.44 | 9.904 1.94 | 7.564 2.44 | 6.154 2.94 | 5.200 3.44 |
| 14.719 1.45 | 9.842 1.95 | 7.529 2.45 | 6.131 2.95 | 5.184 3.45 |
| 14.564 1.46 | 9.780 1.96 | 7.494 2.46 | 6.109 2.96 | 5.168 3.46 |
| 14.412 1.47 | 9.720 1.97 | 7.460 2.47 | 6.086 2.97 | 5.152 3.47 |
| 14.264 1.48 | 9.660 1.98 | 7.426 2.48 | 6.064 2.98 | 5.137 3.48 |
| 14.120 1.49 | 9.601 1.99 | 7.393 2.49 | 6.042 2.99 | 5.121 3.49 |
| 13.979 1.50 | 9.542 2.00 | 7.360 2.50 | 6.021 3.00 | 5.105 3.50 |
| 63 | | | | |